MICROCYBER

NCS-IF105 Current to Fieldbus Converter

MICROCYBER

Contents

1. Brief Introduction	1
2. Installation 2.1 Installation 2.2 Wiring	2
3. Principle and Structure	6
 4. Transmitter Configuration 4.1 Network Topology 4.2 Function Blocks 4.3 Configuration 4.4 Jumper 	10 11 12
5. Maintenance	17
 6. Technical Specification 6.1 Basic parameters 6.2 Technical performance 6.3 Physical performance 	19 20

CERTIFICATE OF MEMBERSHIP

The Board of Directors hereby acknowledges that

Microcyber Corporation

has accepted and fulfilled the requirements of the Bylaws and all rights and privileges of membership are hereby granted

Membership Term: November 2019 - October 2020

Brief Introduction

As intelligent transition device, NCS-IF105 converter receives 0~20mA or 4~20mA analog signal (4 channels) and converts into fieldbus signal. NCS-FI105 converter uses digital communication technology, and makes the interface between field device and controller easier, and reduces the expense of installation and maintenance.

NCS-IF105 converter fulfills the need of FF fieldbus intelligent instrument and can connect with several FF fieldbus devices. NCS-IF105 converter has abundant function blocks and realizes not only normal measurement function also complex control strategy. In order to realize different function, user can choose different function blocks according to requirements and specific application environment.

Installation

Installation

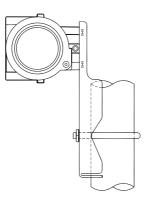
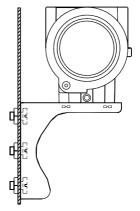
For installation of NCS-IF105 converter, three types of bracket (pipe mounting flat bracket, plate mounting angle bracket and pipe mounting angle bracket) are provided. Accordingly there are three installation methods as the following.

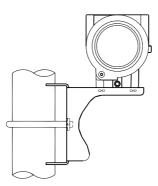
The installation of pipe mounting flat bracket: the typical installation as Figure 2.1 shows. Fix NCS-IF105 converter in flat bracket using four bolts provided, and then fix the flat bracket on the vertical pipe in Φ 50mm around through the U-shape bolt provided.

The installation of plate mounting angle bracket: the typical installation as Figure 2.2 shows. Fix NCS-IF105 converter in angle bracket using four bolts provided, and then fix the angle bracket on the plate through the M10 bolt not provided.

The installation of pipe mounting angle bracket: the typical installation as Figure 2.3, 2.4 shows. Fix NCS-IF105 converter in angle bracket using four bolts provided, and then fix the angle bracket on the horizontal pipe in Φ 50mm around through the U-shape bolt provided.

http://www.microcyber-fieldbus.com


Figure 2.1 The installation of pipe

mounting flat bracket

mounting angle bracket

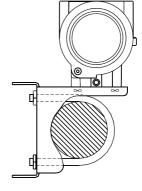
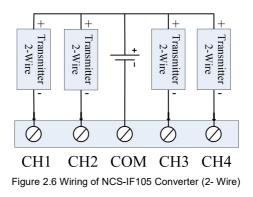


Figure 2-4 The installation of pipe mounting angle bracket-2

Figure 2.3 The installation of pipe mounting angle bracket-1



Wiring

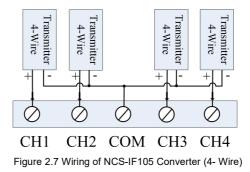

The power and signal of NCS-IF105 converter Transmitter are sharing one pair of cables (Bus Cable). NCS-IF105 converter is suggested to use specific Fieldbus cables recommended by the IEC61158-2. The wiring terminal is at the rear cover side, the wiring terminal board could be seen when the rear cover is screwed.

Figure 2.5 The wiring terminal board of NCS-IF105 Converter

Signal wires should be passed the wire hole. Sensor signal wires are single-point grounding. The Shield of the bus cable should be floating in converter side, and be grounding in bus power side.

The signal and bus cable should not share the line pipe or trunkings with other equipment, and should stay away from high-power equipment.

Principle and Structure

NCS-IF105 converter convert input current signal that generate by most conventional transmitters to fieldbus signal.

NCS-IF105 converter is consisted of five components, as shown in Figure 3.1.

- 1) Terminal board: it is used to connect with fieldbus, current output signal, A/D board and communication board.
- 2) A/D board: it can convert input current signal to digital signal provided to communication board.
- Communication card: it is core component of intelligent instrument, which implements the communication, control, diagnosis and maintenance of Foundation Fieldbus.
- 4) Isolation board: it is used for isolation between communication board and instrument board (power isolation and signal isolation).
- 5) LCD Card (optional): it is used to display function block parameters.

http://www.microcyber-fieldbus.com

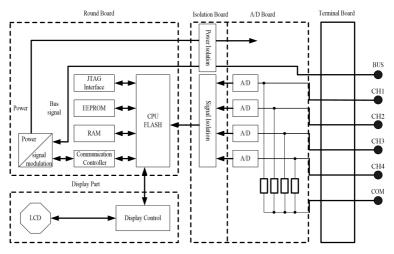


Figure 3.1 Schematic diagram of NCS-IF105 converter

Size of NCS-IF105 Converter

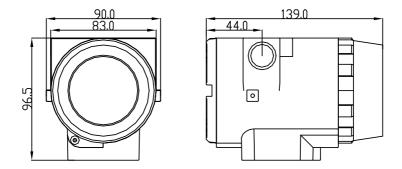


Figure 3.2 Size of NCS-IF105 Converter (unit: mm)

Structure of NCS-IF105 Converter

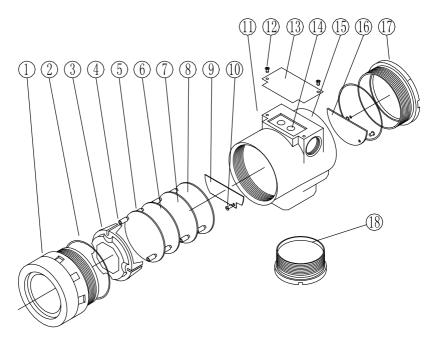


Figure 3.3 Structure of NCS-IF105 Converter

1	Front cover	2	O-ring	3	LCD cover	4	Electronics/LCD
5	Post	6	Communication board	7	Capture board	8	Isolation board
9	Terminal board	10	Screw	11	Wire hole	12	Screw
13	Name	14	Z/X button	15	Housing	16	Pin/block

Current to Fieldbus Converter | NCS IF105 | Page 8 Email | fang.siqi@microcyber.cn

	plate				
17	Rear	18	Bottom cover		
17	cover	10	Bottom cover		

As the core of NCS-IF105 converter, the Communication Card connects with terminal board, isolation board, instrument board and LCD board. The LCD board rotated in four angles is fixed on the Communication board, as Figure 3.4 shows.

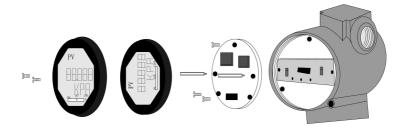


Figure3.4 Assembly structure of the meter

Transmitter Configuration

Network Topology

FF transmitter supports many kind of connection,As shown in figure 4.1. The classic connection modes for a FF device is bus connection, As shown in figure 4.2.The matching resistance on the both side of terminal ensures a good quality of signal. The maximum length of fieldbus is 1900 meters and can be prolonged to 10 kilometers using repeaters.

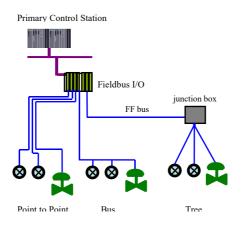


Figure 4.1 FF Network Topology

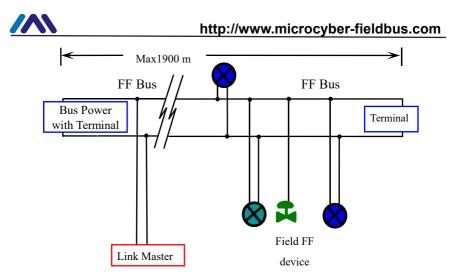


Figure 4.2 FF Bus Connections

Function Blocks

Function Block	Description
Resource	This block contains data from the hardware that is
Resource	associated with the resource.
Transducer	This block converts input/output device variables
Block	into relevant engineering data.
Display	This block configures process variables displayed in
Transducer	LCD.
	This block transmits the input data from the
Analog Input	transducer block to other function block. It has
Analog input	scaling conversion, filtering, square root and low
	cut, etc
PID Control	This block has a lot of features as set point

	treatment (value and rate limiting), filtering and
	alarm on PV, feed-forward, output tracking and
	others.
Ratio	This block realizes ratio control between two input
Ratio	data.
	This block has four analog inputs that may be
Innut Coloctor	selected by an input parameter or according to a
Input Selector	criterion as first good, maximum, minimum, middle
	and average.
	This block has capability for two signal
Cinnal	characteristics based on the same curve. The
Signal	second input has an option for swapping "x" to "y",
Characteristic	and inverse function may be used in signal
	characteristic of read-back variables.
	This block provides dynamic compensation of a
Lead Lag	variable. It is used normally in a feed-forward
	control.

Configuration

NCS-IF105 transmitter can be configured by the Configurator software and NCS4000 DCS software of Microcyber Inc, NI-FBUS Configurator of National Instrument, and DeltaV system of Rosemount.

• Environments

- 1) Windows 2000 or Windows XP system;
- 2) NCS-LD105 Linking Device, H1 Bus Power, H1

Terminal Matcher;

3) FF Configurator;

• Two point calibration

The transmitter can be calibrated by the parameter CAL_POINT_HI and CAL_POINT_LO:

- 1) Input the standard current signal to the channel that will be calibrated. Such as 4 mA.
- Read the actual current value from the parameter PRIMARY_VALUE of transducer block. For example, it is 3.9 mA.
- Set the mode of transducer block to O/S, and then change the parameter SENSOR_CAL_METHOD to "User Trim Standard Calibration".
- 4) Write the value of 4 mA to the parameter CAL_POINT_LO. If the parameter is written with no error, the low calibration would be successful. Please note that calibration value must be in the range of sensor maximum measurement. The calibration value must not have much difference from actual value, or the calibration will be failed.
- 5) Set the mode of transducer block to AUTO.
- 6) The upper value calibration is the same the lower value calibration. Please write the new upper value to the parameter CAL_POINT_HI while calibrating.

• LCD Configuration

By default, the transmitter LCD displays the parameter PRIMARY_VALUE value of the first channel of transducer block. As is shown in the figure 4.3, if user need displays other parameter of other block, please follow the steps below. (X is equal to 1, 2, 3 or 4, the LCD display transducer block can display four kinds of parameter cicely.) The LCD will show CONFIG_ERR if it receives a wrong configuration parameter. Please set the mode to O/S and correct the configuration parameter then set the mode back to AUTO so that it display normally.

- BLOCK_TAG_X: This parameter defines the tag name of function blocks. For example, if user wants to display a parameter of Al1 function block, he should write "Al1" to this parameter. Please note that the length of written char should be equal to 32 bytes. If the length of char is smaller than 32, please insert blank char to make its length equal to 32.
- RELATIVE_INDEX_X: This parameter defines the index of the parameter of function blocks. For example, if user wants to display the OUT parameter of Al1 block, please write 8 to the RELATIVE_INDEX_X.
- SUB_INDEX: This parameter defines the sub index of the parameter of function blocks. For example, if user wants to display the OUT.VALUE of AI1 block, please

write 2 to this parameter.

- MNEMONIC_X: This parameter defines the text which will be displayed in the LCD. The maximum length of text is 16 bytes.
- 5) DECI_PNT_NUMB_X: This parameter defines the position of decimal point for displayed value.
- 6) ACTIVE_X: This parameter wills active the display function of the group.

KC5-IF105@74EF68:DISPLAY ● 書語 ● ● 書品 ■ ■ ■ 自动定时更新 5 <u>→</u> 秒	1		
1 Input Output Alarr	n Tune Customized		
参数名称	▲ 当前值	参数类型	
	0x0001	UINT (2 Bytes)	
TAG_DESC		Octet String	
	0x0001	UINT (2 Bytes)	
	0x01	UINT (1 Byte)	
• • • MODE_BLK			
BLOCK_ERR	(0x0000)	16 Bit Enum	
BLOCK_TAG_1	AI1	Visible String	
RELATIVE_INDEX_1	0x0009	UINT (2 Bytes)	
	0x02	UINT (1 Byte)	
	OUT1	Octet String	
INC_DEC_1	0.000000	Float	
DECI_PNT_NUMB_1	0x02	UINT (1 Byte)	
ACCESS_1	en Monitoring (0x00)	Enum (UINT 8)	
ALPHA_NUMB_1	Jen Alpha (0x00)	Enum (UINT 8)	
ACTIVE_1	en True (0x01)	Enum (UINT 8)	
BLOCK_TAG_2		Visible String	-
RELATIVE_INDEX_2	0x0000	UINT (2 Bytes)	
SUB_INDEX_2	0x00	UINT (1 Byte)	
MNEMONIC_2		Octet String	
INC_DEC_2	0.000000	Float	
DECI_PNT_NUMB_2	0x02	UINT (1 Byte)	
ACCESS_2	en Monitoring (0x00)	Enum (UINT 8)	
ALPHA_NUMB_2	en Alpha (0x00)	Enum (UINT 8)	
ACTIVE_2	en False (0x00)	Enum (UINT 8)	
BLOCK_TAG_3		Visible String	
RELATIVE_INDEX_3	0x000e	UINT (2 Bytes)	
	0x02	LIINT (1 Byte)	

Current to Fieldbus Converter | NCS IF105 | Page 15 Email | fang.siqi@microcyber.cn

Figure 4.3 LCD Configuration

Jumper

NCS-IF105 transmitter has three hardware jumpers:

SIM Jumper: Simulate jumper. It enables the simulation of the transmitter.

WP Jumper: Hardware write lock jumper. It can prevent operator from changing the configuration of the transmitter.

RST Jumper: Factory default reset jumper. It will set the configuration of transmitter to factory default value.

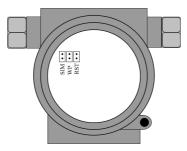


Figure 4.4 NCS-IF105 transmitter hardware jumpers

Maintenance

Phenomenon	Solution		
	Transmitter	connection	
	Check the bu	us connection	
	Check the po	plarity of bus power	
	Check shiel	d of bus cable, if it is single point	
	earthing		
	Bus power		
	Bus power	should in the range 9 ~ 32V for the	
	transmitter.		
	Bus noise ar	nd ripple should fulfill:	
No	1)	peak-to-peak value noise is 16mV,	
Communication		7~39kHz;	
Communication	2)	peak-to-peak value noise is 2V,	
		47~63HZ, for non-EX	
	3)	peak-to-peak value noise is 0.2V,	
		47~63HZ, for EX	
	4)	peak-to-peak value noise is 1.6V,	
		3.9M~125MHZ.	
	Network co	nnection	
	Check netwo	ork topology structure	
	Check termin	nal matcher and wire connection	
	Check the le	ngth of main trunk and branch	

	Address conflict					
	The factory default address if a temporary address					
	from 0xF8 to 0xFB. If there are more devices with					
	temporary address, some device will not					
	communicate online. Please insure that there are					
	not too many devices with temporary address on					
	the bus.					
	Transmitter fault					
	Replace the transmitter with others.					
	Transmitter connection					
	Check if it is short circuit or open circuit.					
	Check if it is the fault of transmitter itself.					
	Noise disturb					
Fail to read	Check if the earthing is correct.					
value from	Check if the terminal is wet.					
transmitter	Check if the cable is far from the strong					
transmitter	Electromagnetic Interference					
	Software configuration					
	Check the function block configuration					
	Transmitter fault					
	Replace the transmitter with others.					

Technical Specification

Basic parameters

Input signal	4~20mA		
Channels	4 Channels		
Power ourplu	9 \sim 32 VDC ;Current Dissipation		
Power supply	(static): ≤ 14mA		
Fieldbus Signal	Communication Baudrate 31.25kbit/s,		
	current-mode		
Insulation	Between housing and terminal board:		
	500 Vrms (707 VDC)		
Display	6 bits digital number and 5 bits		
Display	characters LCD display (Optional)		
	- 40 \sim 85°C (No display)		
Temperature range	- 30 \sim 70°C (display)		
Humidity Range	0% \sim 100% RH		
Start Time	≤ 5s		
Protection grade	IP 65		
EMC	Designed to comply IEC 61000		

Technical performance

Accuracy	< 0.05 %;
Input impedance	150 Ω
Temperature effect	< ± 50 ppm/℃

Physical performance

Electrical connection	1/2 - 14 NPT
Material of Construction	Aluminum
Weight	1.1 kg

MICROCYBER

YOUR FIELDBUS EXPERT

CONTACT INFORMATION

Address: 17-8 Wensu Street, Hunnan New District, Shenyang, China Website: www.microcyber-fieldbus.com Phone: +86-24-31217278/+86-24-31217280 Fax: +86-24-31217338 Email: guo.ruibing@microcyber.cn